资源类型

期刊论文 493

会议视频 11

会议信息 1

年份

2023 36

2022 61

2021 53

2020 47

2019 31

2018 25

2017 28

2016 25

2015 22

2014 20

2013 17

2012 22

2011 21

2010 17

2009 9

2008 16

2007 12

2006 7

2005 5

2004 3

展开 ︾

关键词

环境 5

农业科学 4

三十烷醇 3

人工神经网络 2

动力特性 2

可持续发展 2

土壤 2

基质吸力 2

微波遥感 2

核电厂 2

核电站 2

植物生长调节剂 2

膨胀土 2

重金属 2

防治 2

风化砂 2

高温气冷堆 2

(美国) 核管理委员会 1

ACP1000 1

展开 ︾

检索范围:

排序: 展示方式:

, a phytosiderophore analog, drives beneficial rhizobacterial community formation to promote peanut micronutrition

《农业科学与工程前沿(英文)》 doi: 10.15302/J-FASE-2023531

摘要:

● Proline-2′-deoxymugineic (PDMA) significantly altered the bacterial community in the peanut rhizosphere.

关键词: Beneficial rhizobacteria recruitment     peanut     plant-soil micronutrition enhancement     proline-2′-deoxymugineic acid     stable microbial network    

OPPORTUNITIES AND APPROACHES FOR MANIPULATING SOIL-PLANT MICROBIOMES FOR EFFECTIVE CROP NITROGEN USE

《农业科学与工程前沿(英文)》 2022年 第9卷 第3期   页码 333-343 doi: 10.15302/J-FASE-2022450

摘要:

● Matching nitrification inhibitors with soil properties and nitrifiers is vital to achieve a higher NUE.

关键词: nitrogen     microbiome     NUE     rhizosphere     phyllosphere     soil food web    

HIGHLIGHTS OF THE SPECIAL ISSUE “PROGRESS ON NITROGEN RESEARCH FROM SOIL TO PLANT AND TO THE ENVIRONMENT

《农业科学与工程前沿(英文)》 2022年 第9卷 第3期   页码 313-315 doi: 10.15302/J-FASE-2022460

摘要: . {{custom_ra.content}} . . . {{article.highlightEn}} . . . {{article.abstractEn}} . . . {{article.authorSummayEn}} .

Plant diversity reduces the effect of multiple heavy metal pollution on soil enzyme activities and microbial

Yang GAO, Chiyuan MIAO, Jun XIA, Liang MAO, Yafeng WANG, Pei ZHOU

《环境科学与工程前沿(英文)》 2012年 第6卷 第2期   页码 213-223 doi: 10.1007/s11783-011-0345-z

摘要: It is unclear whether certain plant species and plant diversity could reduce the impacts of multiple heavy metal pollution on soil microbial structure and soil enzyme activities. Random amplified polymorphic DNA (RAPD) was used to analyze the genetic diversity and microbial similarity in planted and unplanted soil under combined cadmium (Cd) and lead (Pb) pollution. A metal hyperaccumulator, , and a common plant, , were used in this research. The results showed that microorganism quantity in planted soil significantly increased, compared with that in unplanted soil with Cd and Pb pollution. The order of microbial community sensitivity in response to Cd and Pb stress was as follows: actinomycetes>bacteria>fungi. Respiration, phosphatase, urease and dehydrogenase activity were significantly inhibited due to Cd and Pb stress. Compared with unplanted soil, planted soils have frequently been reported to have higher rates of microbial activity due to the presence of additional surfaces for microbial colonization and organic compounds released by the plant roots. Two coexisting plants could increase microbe population and the activity of phosphatases, dehydrogenases and, in particular, ureases. Soil enzyme activity was higher in phytoremediated soil than in planted soil in this study. Heavy metal pollution decreased the richness of the soil microbial community, but plant diversity increased DNA sequence diversity and maintained DNA sequence diversity at high levels. The genetic polymorphism under heavy metal stress was higher in phytoremediated soil than in planted soil.

关键词: enzyme activity     soil DNA     microbial population     plant diversity     heavy metal    

Rhizosphere immunity: targeting the underground for sustainable plant health management

Zhong WEI, Ville-Petri FRIMAN, Thomas POMMIER, Stefan GEISEN, Alexandre JOUSSET, Qirong SHEN

《农业科学与工程前沿(英文)》 2020年 第7卷 第3期   页码 317-328 doi: 10.15302/J-FASE-2020346

摘要:

Managing plant health is a great challenge for modern food production and is further complicated by the lack of common ground between the many disciplines involved in disease control. Here we present the concept of rhizosphere immunity, in which plant health is considered as an ecosystem level property emerging from networks of interactions between plants, microbiota and the surrounding soil matrix. These interactions can potentially extend the innate plant immune system to a point where the rhizosphere immunity can fulfil all four core functions of a full immune system: pathogen prevention, recognition, response and homeostasis. We suggest that considering plant health from a meta-organism perspective will help in developing multidisciplinary pathogen management strategies that focus on steering the whole plant-microbe-soil networks instead of individual components. This might be achieved by bringing together the latest discoveries in phytopathology, microbiome research, soil science and agronomy to pave the way toward more sustainable and productive agriculture.

关键词: rhizosphere     soil microbiome     plant immunity     microbial ecology     plant health     soilborne pathogens    

Modeling water and heat transfer in soil-plant-atmosphere continuum applied to maize growth under plastic

Meng DUAN, Jin XIE, Xiaomin MAO

《农业科学与工程前沿(英文)》 2019年 第6卷 第2期   页码 144-161 doi: 10.15302/J-FASE-2019258

摘要:

Based on our previous work modeling crop growth (CropSPAC) and water and heat transfer in the soil-plant-atmosphere continuum (SPAC), the model was improved by considering the effect of plastic film mulching applied to field-grown maize in North-west China. In CropSPAC, a single layer canopy model and a multi-layer soil model were adopted to simulate the energy partition between the canopy and water and heat transfer in the soil, respectively. The maize growth module included photosynthesis, growth stage calculation, biomass accumulation, and participation. The CropSPAC model coupled the maize growth module and SPAC water and heat transfer module through leaf area index (LAI), plant height and soil moisture condition in the root zone. The LAI and plant height were calculated from the maize growth module and used as input for the SPAC water and heat transfer module, and the SPAC module output for soil water stress conditions used as an input for maize growth module. We used , the representation of evaporation resistance, instead of the commonly used evaporation resistance to reflect the change of latent heat flux of soil evaporation under film mulching as well as the induced change in energy partition. The model was tested in a maize field at Yingke irrigation area in North-west China. Results showed reasonable agreement between the simulations and measurements of LAI, above-ground biomass and soil water content. Compared with the original model, the modified model was more reliable for maize growth simulation under film mulching and showed better accuracy for the LAI (with the coefficient of determination = 0.92, the root mean square of error RMSE= 1.23, and the Nush-Suttclife efficiency E = 0.87), the above-ground biomass (with = 0.96, RMSE= 7.17 t·ha and E = 0.95) and the soil water content in 0–1 m soil layer (with = 0.78, RMSE= 49.44 mm and E = 0.26). Scenarios were considered to simulate the influence of future climate change and film mulching on crop growth, soil water and heat conditions, and crop yield. The simulations indicated that the change of LAI, leaf biomass and yield are negatively correlated with temperature change, but the growing degree-days, evaporation, soil water content and soil temperature are positively correlated with temperature change. With an increase in the ratio of film mulching area, the evaporation will decrease, while the impact of film mulching on crop transpiration is not significant. In general, film mulching is effective in saving water, preserving soil moisture, increasing soil surface temperature, shortening the potential growth period, and increasing the potential yield of maize.

关键词: film mulching     growth stage     leaf area index     maize growth     water and heat transfer    

Using a systems modeling approach to improve soil management and soil quality

Enli WANG, Di HE, Zhigan ZHAO, Chris J. SMITH, Ben C. T. MACDONALD

《农业科学与工程前沿(英文)》 2020年 第7卷 第3期   页码 289-295 doi: 10.15302/J-FASE-2020337

摘要:

Soils provide the structural support, water and nutrients for plants in nature and are considered to be the foundation of agriculture production. Improving soil quality and soil health has been advocated as the goal of soil management toward sustainable agricultural intensification. There have been renewed efforts to define and quantify soil quality and soil health but establishing a consensus on the key indicators remains difficult. It is argued that such difficulties are due to the former ways of thinking in soil management which largely focus on soil properties alone. A systems approach that treats soils as a key component of agricultural production systems is promoted. It is argued that soil quality must be quantified in terms of crop productivity and impacts on ecosystems services that are also strongly driven by climate and management interventions. A systems modeling approach captures the interactions among climate, soil, crops and management, and their impacts on system performance, thus helping to quantify the value and quality of soils. Here, three examples are presented to demonstrate this. In this systems context, soil management must be an integral part of systems management practices that also include managing the crops and cropping systems under specific climatic conditions, with cognizance of future climate change.

关键词: APSIM     available water capacity     nitrogen management     soil functional properties     soil health     soil-plant modeling    

AGRONOMIC AND ENVIRONMENTAL BENEFITS OF REINTRODUCING HERB- AND LEGUME-RICH MULTISPECIES LEYS INTO ARABLE ROTATIONS: A REVIEW

《农业科学与工程前沿(英文)》 2022年 第9卷 第2期   页码 245-271 doi: 10.15302/J-FASE-2021439

摘要:

Agricultural intensification and the subsequent decline of mixed farming systems has led to an increase in continuous cropping with only a few fallow or break years, undermining global soil health. Arable-ley rotations incorporating temporary pastures (leys) lasting 1–4 years may alleviate soil degradation by building soil fertility and improving soil structure. However, the majority of previous research on arable-ley rotations has utilized either grass or grass-clover leys within ungrazed systems. Multispecies leys, containing a mix of grasses, legumes, and herbs, are rapidly gaining popularity due to their promotion in agri-environment schemes and potential to deliver greater ecosystem services than conventional grass or grass-clover leys. Livestock grazing in arable-ley rotations may increase the economic resilience of these systems, despite limited research of the effects of multispecies leys on ruminant health and greenhouse gas emissions. This review aims to evaluate previous research on multispecies leys, highlighting areas for future research and the potential benefits and disbenefits on soil quality and livestock productivity. The botanical composition of multispecies leys is crucial, as legumes, deep rooted perennial plants (e.g., Onobrychis viciifolia and Cichorium intybus) and herbs (e.g., Plantago lanceolata) can increase soil carbon, improve soil structure, reduce nitrogen fertilizer requirements, and promote the recovery of soil fauna (e.g., earthworms) in degraded arable soils while delivering additional environmental benefits (e.g., biological nitrification inhibition and enteric methane reduction). Multispecies leys have the potential to deliver biologically driven regenerative agriculture, but more long-term research is needed to underpin evidence-based policy and farmer guidance.

关键词: bioactive forages / integrated crop-livestock systems / nitrogen cycling / plant secondary metabolites / soil carbon / soil quality    

HARNESSING ECOLOGICAL PRINCIPLES AND PHYSIOLOGIC MECHANISMS IN DIVERSIFYING AGRICULTURAL SYSTEMS FOR SUSTAINABILITY: EXPERIENCE FROM STUDIES DEPLOYING NATURE-BASED SOLUTIONS IN SCOTLAND

《农业科学与工程前沿(英文)》 2022年 第9卷 第2期   页码 214-237 doi: 10.15302/J-FASE-2021437

摘要:

To achieve the triple challenge of food security, reversing biodiversity declines plus mitigating and adapting to climate change, there is a drive to embed ecological principles into agricultural, value-chain practices and decision-making. By diversifying cropping systems at several scales there is potential to decrease reliance on inputs, provide resilience to abiotic and biotic stress, enhance plant, microbe and animal biodiversity, and mitigate against climate change. In this review we highlight the research performed in Scotland over the past 5 years into the impact of the use of ecological principles in agriculture on sustainability, resilience and provision of ecosystem functions. We demonstrate that diversification of the system can enhance ecosystem functions. Soil and plant management interventions, including nature-based solutions, can also enhance soil quality and utilization of legacy nutrients. Additionally, this is facilitated by greater reliance on soil biological processes and trophic interactions. We highlight the example of intercropping with legumes to deliver sustainability through ecological principles and use legumes as an exemplar of the innovation. We conclude that there are many effective interventions that can be made to deliver resilient, sustainable, and diverse agroecosystems for crop and food production, and these may be applicable in any agroecosystem.

 

关键词: diversification / ecological principles / legumes / plant management / soil management / soil ecosystem services    

Transmission of antibiotic resistance genes in agroecosystems: an overview

Jizheng HE, Zhenzhen YAN, Qinglin CHEN

《农业科学与工程前沿(英文)》 2020年 第7卷 第3期   页码 329-332 doi: 10.15302/J-FASE-2020333

摘要:

The use of antibiotics in human medicine and animal husbandry has resulted in the continuous release of antibiotics into the environment, which imposes high selection pressure on bacteria to develop antibiotic resistance. The spread and aggregation of antibiotic resistance genes (ARGs) in multidrug-resistant pathogens is one of the most intractable clinical challenges. Numerous studies have been conducted to profile the patterns of ARGs in agricultural ecosystems, as this is closely related to human health and wellbeing. This paper provides an overview of the transmission of ARGs in agricultural ecosystems resulting from the application of animal manures and other organic amendments. The future need to control and mitigate the spread of antibiotic resistance in agricultural ecosystems is also discussed, particularly from a holistic perspective, and requires multiple sector efforts to translate fundamental knowledge into effective strategies.

关键词: agroecosystem     antibiotic resistance     public health     soil-plant system    

Dissipation of polycyclic aromatic hydrocarbons and microbial activity in a field soil planted with perennial

Dengqiang FU, Ying TENG, Yuanyuan SHEN, Mingming SUN, Chen TU, Yongming LUO, Zhengao LI, Peter CHRISTIE

《环境科学与工程前沿(英文)》 2012年 第6卷 第3期   页码 330-335 doi: 10.1007/s11783-011-0366-7

摘要: Dissipation and plant uptake of polycyclic aromatic hydrocarbons (PAHs) in contaminated agricultural soil planted with perennial ryegrass were investigated in a field experiment. After two seasons of grass cultivation the mean concentration of 12 PAHs in soil decreased by 23.4% compared with the initial soil. The 3-, 4-, 5-, and 6-ring PAHs were dissipated by 30.9%, 25.5%, 21.2%, and 16.3% from the soil, respectively. Ryegrass shoots accumulated about 280 μg·kg , shoot dry matter biomass reached 2.48 × 10 kg·ha , and plant uptake accounted for about 0.99% of the decrease in PAHs in the soil. Significantly higher soil enzyme activities and microbial community functional diversity were observed in planted soil than that in the unplanted control. The results suggest that planting ryegrass may promote the dissipation of PAHs in long-term contaminated agricultural soil, and plant-promoted microbial degradation may be a main mechanism of phytoremediation.

关键词: perennial ryegrass     polycyclic aromatic hydrocarbon bioremediation     plant uptake     soil microbial activity    

Removal, distribution and plant uptake of perfluorooctane sulfonate (PFOS) in a simulated constructed

Weichuan Qiao, Rong Li, Tianhao Tang, Achuo Anitta Zuh

《环境科学与工程前沿(英文)》 2021年 第15卷 第2期 doi: 10.1007/s11783-020-1312-3

摘要: Abstract • PFOS was removed by soil adsorption and plant uptake in the VFCW. • Uptake of PFOS by E. crassipes was more than that of C. alternifolius. • PFOS in wastewater can inhibit the removal of nutrients. • Dosing with PFOS changed the soil microbial community in the VFCW. A vertical-flow constructed wetland (VFCW) was used to treat simulated domestic sewage containing perfluorooctane sulfonate (PFOS). The removal rate of PFOS in the domestic sewage was 93%–98%, through soil adsorption and plant uptake, suggesting that VFCWs can remove PFOS efficiently from wastewater. The removal of PFOS in the VFCW was dependent on soil adsorption and plant uptake; moreover, the percentage of soil adsorption was 61%–89%, and was higher than that of the plants uptake (5%–31%). The absorption capacity of Eichhornia crassipes (E. crassipes) (1186.71 mg/kg) was higher than that of Cyperus alternifolius (C. alternifolius) (162.77 mg/kg) under 10 mg/L PFOS, and the transfer factor of PFOS in E. crassipes and C. alternifolius was 0.04 and 0.58, respectively, indicating that PFOS is not easily translocated to leaves from roots of wetland plants; moreover, uptake of PFOS by E. crassipes was more than that of C. alternifolius because the biomass of E. crassipes was more than that of C. alternifolius and the roots of E. crassipes can take up PFOS directly from wastewater while C. alternifolius needs to do so via its roots in the soil. The concentration of 10 mg/L PFOS had an obvious inhibitory effect on the removal rate of total nitrogen, total phosphorus, chemical oxygen demand, and ammonia nitrogen in the VFCW, which decreased by 15%, 10%, 10% and 12%, respectively. Dosing with PFOS in the wastewater reduced the bacterial richness but increased the diversity in soil because PFOS stimulated the growth of PFOS-tolerant strains.

关键词: Vertical-flow constructed wetland     Perfluorooctane sulfonate     Wetland plants     Soil microbial community     Effect     Speciality: Wetlands     Transformation     Organic pollutants     Phytoremediation     Exposure assessment     Sewage    

Turbidity-adaptive underwater image enhancement method using image fusion

《机械工程前沿(英文)》 2022年 第17卷 第3期 doi: 10.1007/s11465-021-0669-8

摘要: Clear, correct imaging is a prerequisite for underwater operations. In real freshwater environment including rivers and lakes, the water bodies are usually turbid and dynamic, which brings extra troubles to quality of imaging due to color deviation and suspended particulate. Most of the existing underwater imaging methods focus on relatively clear underwater environment, it is uncertain that if those methods can work well in turbid and dynamic underwater environments. In this paper, we propose a turbidity-adaptive underwater image enhancement method. To deal with attenuation and scattering of varying degree, the turbidity is detected by the histogram of images. Based on the detection result, different image enhancement strategies are designed to deal with the problem of color deviation and blurring. The proposed method is verified by an underwater image dataset captured in real underwater environment. The result is evaluated by image metrics including structure similarity index measure, underwater color image quality evaluation metric, and speeded-up robust features. Test results exhibit that the method can correct the color deviation and improve the quality of underwater images.

关键词: turbidity     underwater image enhancement     image fusion     underwater robots     visibility    

基于学习自适应区域选择的自动增强图像 None

Na LI, Jian ZHAN

《信息与电子工程前沿(英文)》 2019年 第20卷 第2期   页码 206-221 doi: 10.1631/FITEE.1700125

摘要: 如今数码相机被广泛用于日常摄影。然而,部分照片缺乏细节,需要增强处理。很多现有图像增强算法基于局部区域,而且同一图像所选区域尺寸通常是固定的。用户需手工选择合适的区域尺寸获取最佳图像增强效果。提出一种基于自适应区域选择的自动增强图像算法。该算法采用明暗两个通道,解决各类图像曝光问题。对网上爬取的大量自然图像统计分析获取阈值,自动选择用于通道提取的区域尺寸。该方法可自动增强模糊或者曝光不足/背光的图像,无需任何用户交互。实验结果表明,该算法对现有基于区域的图像增强算法有显著改进。

关键词: 图像增强;对比度增强;暗通道;明通道;自适应区域处理    

Performance enhancement of partially shaded solar PV array using novel shade dispersion technique

Namani RAKESH,T. Venkata MADHAVARAM

《能源前沿(英文)》 2016年 第10卷 第2期   页码 227-239 doi: 10.1007/s11708-016-0405-y

摘要: Solar photo voltaic array (SPVA) generates a smaller amount of power than the standard rating of the panel due to the partial shading effect. Since the modules of the arrays receive different solar irradiations, the P-V characteristics of photovoltaic (PV) arrays contain multiple peaks or local peaks. This paper presents an innovative method (magic square) in order to increase the generated power by configuring the modules of a shaded photovoltaic array. In this approach, the physical location of the modules in the total cross tied (TCT) connected in the solar PV array is rearranged based on the magic square arrangement pattern. This connection is done without altering any electrical configurations of the modules in the PV array. This method can distribute the shading effect over the entire PV array, without concentrating on any row of modules and can achieve global peaks. For different types of shading patterns, the output power of the solar PV array with the proposed magic square configuration is compared with the traditional configurations and the performance is calculated. This paper presents a new reconfiguration technique for solar PV arrays, which increases the PV power under different shading conditions. The proposed technique facilitates the distribution of the effect of shading over the entire array, thereby, reducing the mismatch losses caused by partial shading. The theoretical calculations are tested through simulations in Matlab/Simulink to validate the results. A comparison of power loss for different types of topologies under different types of shading patterns for a 4 × 4 array is also explained.

关键词: photovoltaic cells     mismatch loss     shading patterns     partial shading     magic square     power enhancement     global peaks and total cross tied (TCT)    

标题 作者 时间 类型 操作

, a phytosiderophore analog, drives beneficial rhizobacterial community formation to promote peanut micronutrition

期刊论文

OPPORTUNITIES AND APPROACHES FOR MANIPULATING SOIL-PLANT MICROBIOMES FOR EFFECTIVE CROP NITROGEN USE

期刊论文

HIGHLIGHTS OF THE SPECIAL ISSUE “PROGRESS ON NITROGEN RESEARCH FROM SOIL TO PLANT AND TO THE ENVIRONMENT

期刊论文

Plant diversity reduces the effect of multiple heavy metal pollution on soil enzyme activities and microbial

Yang GAO, Chiyuan MIAO, Jun XIA, Liang MAO, Yafeng WANG, Pei ZHOU

期刊论文

Rhizosphere immunity: targeting the underground for sustainable plant health management

Zhong WEI, Ville-Petri FRIMAN, Thomas POMMIER, Stefan GEISEN, Alexandre JOUSSET, Qirong SHEN

期刊论文

Modeling water and heat transfer in soil-plant-atmosphere continuum applied to maize growth under plastic

Meng DUAN, Jin XIE, Xiaomin MAO

期刊论文

Using a systems modeling approach to improve soil management and soil quality

Enli WANG, Di HE, Zhigan ZHAO, Chris J. SMITH, Ben C. T. MACDONALD

期刊论文

AGRONOMIC AND ENVIRONMENTAL BENEFITS OF REINTRODUCING HERB- AND LEGUME-RICH MULTISPECIES LEYS INTO ARABLE ROTATIONS: A REVIEW

期刊论文

HARNESSING ECOLOGICAL PRINCIPLES AND PHYSIOLOGIC MECHANISMS IN DIVERSIFYING AGRICULTURAL SYSTEMS FOR SUSTAINABILITY: EXPERIENCE FROM STUDIES DEPLOYING NATURE-BASED SOLUTIONS IN SCOTLAND

期刊论文

Transmission of antibiotic resistance genes in agroecosystems: an overview

Jizheng HE, Zhenzhen YAN, Qinglin CHEN

期刊论文

Dissipation of polycyclic aromatic hydrocarbons and microbial activity in a field soil planted with perennial

Dengqiang FU, Ying TENG, Yuanyuan SHEN, Mingming SUN, Chen TU, Yongming LUO, Zhengao LI, Peter CHRISTIE

期刊论文

Removal, distribution and plant uptake of perfluorooctane sulfonate (PFOS) in a simulated constructed

Weichuan Qiao, Rong Li, Tianhao Tang, Achuo Anitta Zuh

期刊论文

Turbidity-adaptive underwater image enhancement method using image fusion

期刊论文

基于学习自适应区域选择的自动增强图像

Na LI, Jian ZHAN

期刊论文

Performance enhancement of partially shaded solar PV array using novel shade dispersion technique

Namani RAKESH,T. Venkata MADHAVARAM

期刊论文